Copied to
clipboard

G = C24.375C23order 128 = 27

215th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.375C23, C23.549C24, C22.3242+ 1+4, C22.2402- 1+4, C23.71(C4○D4), (C2×C42).81C22, C23.8Q890C2, C23.Q844C2, C23.4Q833C2, C23.11D468C2, (C22×C4).159C23, (C23×C4).144C22, C23.10D4.34C2, C23.23D4.47C2, (C22×D4).203C22, C24.C22108C2, C23.83C2367C2, C2.47(C22.32C24), C23.63C23116C2, C23.65C23107C2, C2.C42.267C22, C2.56(C22.36C24), C2.33(C22.34C24), C2.46(C22.33C24), C2.101(C23.36C23), (C4×C22⋊C4)⋊96C2, (C2×C4).174(C4○D4), (C2×C4⋊C4).375C22, C22.421(C2×C4○D4), (C2×C22⋊C4).472C22, SmallGroup(128,1381)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.375C23
C1C2C22C23C22×C4C2×C22⋊C4C23.23D4 — C24.375C23
C1C23 — C24.375C23
C1C23 — C24.375C23
C1C23 — C24.375C23

Generators and relations for C24.375C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=ca=ac, g2=b, ab=ba, ede=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C4×C22⋊C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.65C23, C23.10D4, C23.Q8, C23.11D4, C23.4Q8, C23.83C23, C24.375C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.32C24, C22.33C24, C22.34C24, C22.36C24, C24.375C23

Smallest permutation representation of C24.375C23
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 37)(6 38)(7 39)(8 40)(13 52)(14 49)(15 50)(16 51)(17 46)(18 47)(19 48)(20 45)(21 43)(22 44)(23 41)(24 42)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)
(1 26)(2 27)(3 28)(4 25)(5 23)(6 24)(7 21)(8 22)(9 54)(10 55)(11 56)(12 53)(13 60)(14 57)(15 58)(16 59)(17 62)(18 63)(19 64)(20 61)(29 52)(30 49)(31 50)(32 51)(33 48)(34 45)(35 46)(36 47)(37 41)(38 42)(39 43)(40 44)
(1 12)(2 9)(3 10)(4 11)(5 39)(6 40)(7 37)(8 38)(13 50)(14 51)(15 52)(16 49)(17 48)(18 45)(19 46)(20 47)(21 41)(22 42)(23 43)(24 44)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(33 62)(34 63)(35 64)(36 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 47)(2 19)(3 45)(4 17)(5 58)(6 32)(7 60)(8 30)(9 46)(10 18)(11 48)(12 20)(13 21)(14 44)(15 23)(16 42)(22 49)(24 51)(25 62)(26 36)(27 64)(28 34)(29 39)(31 37)(33 56)(35 54)(38 59)(40 57)(41 50)(43 52)(53 61)(55 63)
(2 27)(4 25)(5 7)(6 22)(8 24)(9 54)(11 56)(13 52)(14 30)(15 50)(16 32)(17 33)(18 45)(19 35)(20 47)(21 23)(29 60)(31 58)(34 63)(36 61)(37 39)(38 44)(40 42)(41 43)(46 64)(48 62)(49 57)(51 59)
(1 31 26 50)(2 32 27 51)(3 29 28 52)(4 30 25 49)(5 63 23 18)(6 64 24 19)(7 61 21 20)(8 62 22 17)(9 57 54 14)(10 58 55 15)(11 59 56 16)(12 60 53 13)(33 42 48 38)(34 43 45 39)(35 44 46 40)(36 41 47 37)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47)(2,19)(3,45)(4,17)(5,58)(6,32)(7,60)(8,30)(9,46)(10,18)(11,48)(12,20)(13,21)(14,44)(15,23)(16,42)(22,49)(24,51)(25,62)(26,36)(27,64)(28,34)(29,39)(31,37)(33,56)(35,54)(38,59)(40,57)(41,50)(43,52)(53,61)(55,63), (2,27)(4,25)(5,7)(6,22)(8,24)(9,54)(11,56)(13,52)(14,30)(15,50)(16,32)(17,33)(18,45)(19,35)(20,47)(21,23)(29,60)(31,58)(34,63)(36,61)(37,39)(38,44)(40,42)(41,43)(46,64)(48,62)(49,57)(51,59), (1,31,26,50)(2,32,27,51)(3,29,28,52)(4,30,25,49)(5,63,23,18)(6,64,24,19)(7,61,21,20)(8,62,22,17)(9,57,54,14)(10,58,55,15)(11,59,56,16)(12,60,53,13)(33,42,48,38)(34,43,45,39)(35,44,46,40)(36,41,47,37)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,47)(2,19)(3,45)(4,17)(5,58)(6,32)(7,60)(8,30)(9,46)(10,18)(11,48)(12,20)(13,21)(14,44)(15,23)(16,42)(22,49)(24,51)(25,62)(26,36)(27,64)(28,34)(29,39)(31,37)(33,56)(35,54)(38,59)(40,57)(41,50)(43,52)(53,61)(55,63), (2,27)(4,25)(5,7)(6,22)(8,24)(9,54)(11,56)(13,52)(14,30)(15,50)(16,32)(17,33)(18,45)(19,35)(20,47)(21,23)(29,60)(31,58)(34,63)(36,61)(37,39)(38,44)(40,42)(41,43)(46,64)(48,62)(49,57)(51,59), (1,31,26,50)(2,32,27,51)(3,29,28,52)(4,30,25,49)(5,63,23,18)(6,64,24,19)(7,61,21,20)(8,62,22,17)(9,57,54,14)(10,58,55,15)(11,59,56,16)(12,60,53,13)(33,42,48,38)(34,43,45,39)(35,44,46,40)(36,41,47,37) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,37),(6,38),(7,39),(8,40),(13,52),(14,49),(15,50),(16,51),(17,46),(18,47),(19,48),(20,45),(21,43),(22,44),(23,41),(24,42),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63)], [(1,26),(2,27),(3,28),(4,25),(5,23),(6,24),(7,21),(8,22),(9,54),(10,55),(11,56),(12,53),(13,60),(14,57),(15,58),(16,59),(17,62),(18,63),(19,64),(20,61),(29,52),(30,49),(31,50),(32,51),(33,48),(34,45),(35,46),(36,47),(37,41),(38,42),(39,43),(40,44)], [(1,12),(2,9),(3,10),(4,11),(5,39),(6,40),(7,37),(8,38),(13,50),(14,51),(15,52),(16,49),(17,48),(18,45),(19,46),(20,47),(21,41),(22,42),(23,43),(24,44),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(33,62),(34,63),(35,64),(36,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,47),(2,19),(3,45),(4,17),(5,58),(6,32),(7,60),(8,30),(9,46),(10,18),(11,48),(12,20),(13,21),(14,44),(15,23),(16,42),(22,49),(24,51),(25,62),(26,36),(27,64),(28,34),(29,39),(31,37),(33,56),(35,54),(38,59),(40,57),(41,50),(43,52),(53,61),(55,63)], [(2,27),(4,25),(5,7),(6,22),(8,24),(9,54),(11,56),(13,52),(14,30),(15,50),(16,32),(17,33),(18,45),(19,35),(20,47),(21,23),(29,60),(31,58),(34,63),(36,61),(37,39),(38,44),(40,42),(41,43),(46,64),(48,62),(49,57),(51,59)], [(1,31,26,50),(2,32,27,51),(3,29,28,52),(4,30,25,49),(5,63,23,18),(6,64,24,19),(7,61,21,20),(8,62,22,17),(9,57,54,14),(10,58,55,15),(11,59,56,16),(12,60,53,13),(33,42,48,38),(34,43,45,39),(35,44,46,40),(36,41,47,37)]])

32 conjugacy classes

class 1 2A···2G2H2I2J4A4B4C4D4E···4N4O···4U
order12···222244444···44···4
size11···144822224···48···8

32 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.375C23C4×C22⋊C4C23.8Q8C23.23D4C23.63C23C24.C22C23.65C23C23.10D4C23.Q8C23.11D4C23.4Q8C23.83C23C2×C4C23C22C22
# reps1111121212128431

Matrix representation of C24.375C23 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
40000000
04000000
00100000
00010000
00004000
00000400
00000040
00000004
,
02000000
20000000
00220000
00130000
00000003
00000030
00000200
00002000
,
01000000
10000000
00100000
00010000
00000010
00000001
00001000
00000100
,
10000000
04000000
00100000
00340000
00001000
00000400
00000040
00000001
,
30000000
03000000
00200000
00020000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C24.375C23 in GAP, Magma, Sage, TeX

C_2^4._{375}C_2^3
% in TeX

G:=Group("C2^4.375C2^3");
// GroupNames label

G:=SmallGroup(128,1381);
// by ID

G=gap.SmallGroup(128,1381);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,758,723,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=c*a=a*c,g^2=b,a*b=b*a,e*d*e=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽